Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By : Rowel Atienza
Book Image

Advanced Deep Learning with TensorFlow 2 and Keras - Second Edition

By: Rowel Atienza

Overview of this book

Advanced Deep Learning with TensorFlow 2 and Keras, Second Edition is a completely updated edition of the bestselling guide to the advanced deep learning techniques available today. Revised for TensorFlow 2.x, this edition introduces you to the practical side of deep learning with new chapters on unsupervised learning using mutual information, object detection (SSD), and semantic segmentation (FCN and PSPNet), further allowing you to create your own cutting-edge AI projects. Using Keras as an open-source deep learning library, the book features hands-on projects that show you how to create more effective AI with the most up-to-date techniques. Starting with an overview of multi-layer perceptrons (MLPs), convolutional neural networks (CNNs), and recurrent neural networks (RNNs), the book then introduces more cutting-edge techniques as you explore deep neural network architectures, including ResNet and DenseNet, and how to create autoencoders. You will then learn about GANs, and how they can unlock new levels of AI performance. Next, you’ll discover how a variational autoencoder (VAE) is implemented, and how GANs and VAEs have the generative power to synthesize data that can be extremely convincing to humans. You'll also learn to implement DRL such as Deep Q-Learning and Policy Gradient Methods, which are critical to many modern results in AI.
Table of Contents (16 chapters)
14
Other Books You May Enjoy
15
Index

4. Conclusion

In this chapter, we've presented various improvements to the original GAN algorithm, first introduced in the previous chapter. WGAN proposed an algorithm to improve the stability of training by using the EMD or Wasserstein 1 loss. LSGAN argued that the original cross-entropy function of GANs is prone to vanishing gradients, unlike least squares loss. LSGAN proposed an algorithm to achieve stable training and quality outputs. ACGAN convincingly improved the quality of the conditional generation of MNIST digits by requiring the discriminator to perform a classification task on top of determining whether the input image was fake or real.

In the next chapter, we'll study how to control the attributes of generator outputs. Whilst CGAN and ACGAN are able to indicate the desired digits to produce, we have not analyzed GANs that can specify the attributes of outputs. For example, we may want to control the writing style of the MNIST digits, such as roundness, tilt...