Book Image

Automotive Cybersecurity Engineering Handbook

By : Dr. Ahmad MK Nasser
5 (1)
Book Image

Automotive Cybersecurity Engineering Handbook

5 (1)
By: Dr. Ahmad MK Nasser

Overview of this book

Replete with exciting challenges, automotive cybersecurity is an emerging domain, and cybersecurity is a foundational enabler for current and future connected vehicle features. This book addresses the severe talent shortage faced by the industry in meeting the demand for building cyber-resilient systems by consolidating practical topics on securing automotive systems to help automotive engineers gain a competitive edge. The book begins by exploring present and future automotive vehicle architectures, along with relevant threats and the skills essential to addressing them. You’ll then explore cybersecurity engineering methods, focusing on compliance with existing automotive standards while making the process advantageous. The chapters are designed in a way to help you with both the theory and practice of building secure systems while considering the cost, time, and resource limitations of automotive engineering. The concluding chapters take a practical approach to threat modeling automotive systems and teach you how to implement security controls across different vehicle architecture layers. By the end of this book, you'll have learned effective methods of handling cybersecurity risks in any automotive product, from single libraries to entire vehicle architectures.
Table of Contents (15 chapters)
1
Part 1:Understanding the Cybersecurity Relevance of the Vehicle Electrical Architecture
5
Part 2: Understanding the Secure Engineering Development Process
9
Part 3: Executing the Process to Engineer a Secure Automotive Product

Introducing the Vehicle Electrical/Electronic Architecture

The vehicle Electrical/Electronic (E/E) architecture refers to the set of electronic components, electrical wire harnesses, networking technologies, and software applications that coalesce to manage a diverse suite of vehicle functions tasked with controlling the vehicle and user experience.

While the combination of software and electronics has revolutionized how vehicle features are designed and deployed, it gradually produced a rich attack surface that made vehicles vulnerable to cyber threats. Therefore, understanding the fundamental concepts of the E/E architecture is a prerequisite to analyzing vehicle security. To help provide the necessary background, first, we will explore the various hardware platforms supported in the electronic control unit (ECU) and the corresponding reference software architectures. Next, we will examine how ECUs can be grouped into domains (which are distinct functional subsystems that have specific responsibilities) along with the networking technologies needed for their communication. With the ECUs and network layers defined, we will turn our attention to the sensors and actuators that enable the vehicle to sense the environment and react to it. Finally, we will put all these components together in the different vehicle architecture topologies while showing current and future trends in this area. Following this hierarchical approach should help us gain perspective on how the vehicle can be attacked.

As we dive through the E/E architecture layers, we will pose a series of questions in the form of discussion points to help you explore threats against your vehicle components. A brief answer list will be provided at the end of this chapter. The next few chapters will offer deeper insights into these discussion points as we navigate the cybersecurity threat landscape.

Note that this chapter does not attempt to offer a comprehensive list of every possible E/E architecture and component, but rather focuses on the aspects that are most relevant to vehicle cybersecurity. If you are well acquainted with vehicle E/E architecture concepts, this chapter can be considered a review to set the stage for cybersecurity analysis.

In this chapter, we will cover the following main topics:

  • Overview of the basic building blocks of the E/E architecture
  • Electronic control units
  • ECU domains
  • Exploring the in-vehicle network
  • Sensors and actuators
  • Exploring the vehicle architecture types