Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Computing MSE and median absolute error


The mean squared error (MSE) and median absolute error (MedAE) are popular regression metrics. They are given by the following equations:

The MSE (10.6) is analogous to population variance. The square root of the MSE (RMSE) is, therefore, analogous to standard deviation. The units of the MSE are the same as the variable under analysis—in our case, temperature. An ideal fit has zero-valued residuals and, therefore, its MSE is equal to zero. Since we are dealing with squared errors, the MSE has values that are larger or ideally equal to zero.

The MedAE is similar to the MSE, but we start with the absolute values of the residuals, and we use the median instead of the mean as the measure for centrality. The MedAE is also analogous to variance and is ideally zero or very small. Taking the absolute value instead of squaring potentially avoids numerical instability and speed issues, and the median is more robust for outliers than the mean. Also, taking the...