Book Image

Python Data Analysis Cookbook

By : Ivan Idris
Book Image

Python Data Analysis Cookbook

By: Ivan Idris

Overview of this book

Data analysis is a rapidly evolving field and Python is a multi-paradigm programming language suitable for object-oriented application development and functional design patterns. As Python offers a range of tools and libraries for all purposes, it has slowly evolved as the primary language for data science, including topics on: data analysis, visualization, and machine learning. Python Data Analysis Cookbook focuses on reproducibility and creating production-ready systems. You will start with recipes that set the foundation for data analysis with libraries such as matplotlib, NumPy, and pandas. You will learn to create visualizations by choosing color maps and palettes then dive into statistical data analysis using distribution algorithms and correlations. You’ll then help you find your way around different data and numerical problems, get to grips with Spark and HDFS, and then set up migration scripts for web mining. In this book, you will dive deeper into recipes on spectral analysis, smoothing, and bootstrapping methods. Moving on, you will learn to rank stocks and check market efficiency, then work with metrics and clusters. You will achieve parallelism to improve system performance by using multiple threads and speeding up your code. By the end of the book, you will be capable of handling various data analysis techniques in Python and devising solutions for problem scenarios.
Table of Contents (23 chapters)
Python Data Analysis Cookbook
Credits
About the Author
About the Reviewers
www.PacktPub.com
Preface
Glossary
Index

Matplotlib


The following method is used to get or set axis properties. For example, axis('off') turns off the axis lines and labels:

matplotlib.pyplot.axis(*v, **kwargs)

The following argument creates a new figure:

matplotlib.pyplot.figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True, FigureClass=<class 'matplotlib.figure.Figure'>, **kwargs)

The following argument turns the plot grids on or off:

matplotlib.pyplot.grid(b=None, which='major', axis='both', **kwargs)

The following argument plots a histogram:

matplotlib.pyplot.hist(x, bins=10, range=None, normed=False, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, hold=None, **kwargs)

The following displays an image for array-like data:

matplotlib.pyplot.imshow(X, cmap=None, norm=None, aspect=None, interpolation=None, alpha=None, vmin=None, vmax=None, origin=None, extent=None, shape=None, filternorm=1, filterrad=4.0, imlim=None, resample=None, url=None, hold=None, **kwargs)

The following shows a legend at an optionally specified location (for instance, plt.legend(loc='best')):

matplotlib.pyplot.legend(*args, **kwargs)

The following argument creates a two-dimensional plot with single or multiple x, y pairs and corresponding optional format string:

matplotlib.pyplot.plot(*args, **kwargs)

The following creates a scatter plot of two arrays:

matplotlib.pyplot.scatter(x, y, s=20, c='b', marker='o', cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, hold=None, **kwargs)

The following argument displays a plot:

matplotlib.pyplot.show(*args, **kw)

The following argument creates subplots given the row number, column number, and index number of the plot. All these numbers start at one. For instance, plt.subplot(221) creates the first subplot in a two-by-two grid:

matplotlib.pyplot.subplot(*args, **kwargs)

The following argument puts a title on the plot:

matplotlib.pyplot.title(s, *args, **kwargs)