Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

64-bit ARM architecture and instruction set

The 64-bit version of the ARM architecture, named AArch64, was announced in 2011. This architecture has 31 general-purpose 64-bit registers, 64-bit addressing, a 48-bit virtual address space, and a new instruction set named A64. The 64-bit instruction set is a superset of the 32-bit instruction set, allowing existing 32-bit code to run unmodified on 64-bit processors.

Instructions are 32 bits wide and most operands are 32 or 64 bits. The A64 register functions differ in some respects from 32-bit mode: the program counter is no longer directly accessible as a register and an additional register is provided that always returns an operand value of zero.

At the user privilege level, most A64 instructions have the same mnemonics as the corresponding 32-bit instructions. The assembler determines whether an instruction operates on 64-bit or 32-bit data based on the operands provided. The following rules determine the operand length and register...