Book Image

Modern Computer Architecture and Organization

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures but overwhelmed by their complexity? This book will help you to learn how modern computer systems work, from the lowest level of transistor switching to the macro view of collaborating multiprocessor servers. You'll gain unique insights into the internal behavior of processors that execute the code developed in high-level languages and enable you to design more efficient and scalable software systems. The book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction operations. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and how to write a quantum computing program and run it on an actual quantum computer. By the end of this book, you will have a thorough understanding of modern processor and computer architectures and the future directions these architectures are likely to take.
Table of Contents (20 chapters)
1
Section 1: Fundamentals of Computer Architecture
8
Section 2: Processor Architectures and Instruction Sets
14
Section 3: Applications of Computer Architecture

Constructing DRAM circuits with MOSFETs

A single bit in a standard dynamic random-access memory (DRAM) integrated circuit is composed of two circuit elements: a MOSFET and a capacitor. The following section provides a brief introduction to the electrical characteristics of capacitors.

The capacitor

A capacitor is a two-terminal passive circuit element capable of storing energy. Energy enters and leaves a capacitor as electrical current. The voltage across the capacitor terminals is proportional to the quantity of electrical energy contained in the capacitor.

To continue the hydraulic system analogy introduced in Chapter 2, Digital Logic, think of a capacitor as a balloon attached to the side of the pipe leading to a water tap. Water pressure in the pipe causes the balloon to inflate, filling it with some of the water from the pipe. Let's assume this is a strong balloon, and that as it inflates, the balloon stretches, increasing the pressure inside the balloon. The balloon...