Book Image

OpenCV 3.x with Python By Example - Second Edition

By : Gabriel Garrido Calvo, Prateek Joshi
Book Image

OpenCV 3.x with Python By Example - Second Edition

By: Gabriel Garrido Calvo, Prateek Joshi

Overview of this book

Computer vision is found everywhere in modern technology. OpenCV for Python enables us to run computer vision algorithms in real time. With the advent of powerful machines, we have more processing power to work with. Using this technology, we can seamlessly integrate our computer vision applications into the cloud. Focusing on OpenCV 3.x and Python 3.6, this book will walk you through all the building blocks needed to build amazing computer vision applications with ease. We start off by manipulating images using simple filtering and geometric transformations. We then discuss affine and projective transformations and see how we can use them to apply cool advanced manipulations to your photos like resizing them while keeping the content intact or smoothly removing undesired elements. We will then cover techniques of object tracking, body part recognition, and object recognition using advanced techniques of machine learning such as artificial neural network. 3D reconstruction and augmented reality techniques are also included. The book covers popular OpenCV libraries with the help of examples. This book is a practical tutorial that covers various examples at different levels, teaching you about the different functions of OpenCV and their actual implementation. By the end of this book, you will have acquired the skills to use OpenCV and Python to develop real-world computer vision applications.
Table of Contents (17 chapters)
Title Page
Copyright and Credits
Packt Upsell

Interacting with a live video stream

Let's see how we can use the mouse to interact with a live video stream from the webcam. We can use the mouse to select a region, and then apply a negative film effect on that region, as shown in the following image:

In the following program, we will capture the video stream from the webcam, select a region of interest with the mouse, and then apply this effect:

import cv2 
import numpy as np 

def update_pts(params, x, y):
    global x_init, y_init
    params["top_left_pt"] = (min(x_init, x), min(y_init, y))
    params["bottom_right_pt"] = (max(x_init, x), max(y_init, y))
    img[y_init:y, x_init:x] = 255 - img[y_init:y, x_init:x]
def draw_rectangle(event, x, y, flags, params): 
    global x_init, y_init, drawing
    # First click initialize the init rectangle point 
    if event == cv2.EVENT_LBUTTONDOWN:
        drawing = True 
        x_init, y_init = x, y 
    # Meanwhile mouse button is pressed, update diagonal rectangle point 
    elif event ==...