In the previous chapter, we discussed where to find useful datasets and examined the basic import commands of Python packages. In this section, having kept your toolbox ready, you are about to learn how to structurally load, manipulate, process, and polish data using pandas and NumPy.
-
Book Overview & Buying
-
Table Of Contents
Python Data Science Essentials - Third Edition
By :
Python Data Science Essentials
By:
Overview of this book
Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn.
The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost.
By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users
Table of Contents (11 chapters)
Preface
First Steps
Data Munging
The Data Pipeline
Machine Learning
Visualization, Insights, and Results
Social Network Analysis
Deep Learning Beyond the Basics
Spark for Big Data
Strengthen Your Python Foundations
Other Books You May Enjoy