Sign In Start Free Trial
Account

Add to playlist

Create a Playlist

Modal Close icon
You need to login to use this feature.
  • Book Overview & Buying Python Data Science Essentials
  • Table Of Contents Toc
Python Data Science Essentials

Python Data Science Essentials - Third Edition

By : Alberto Boschetti, Luca Massaron
5 (2)
close
close
Python Data Science Essentials

Python Data Science Essentials

5 (2)
By: Alberto Boschetti, Luca Massaron

Overview of this book

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users
Table of Contents (11 chapters)
close
close

Summary

In this chapter, we discussed how pandas and NumPy can provide you with all the tools to load and effectively mung your data.

We started with pandas and its data structures, DataFrames and series, and went through to the final NumPy two-dimensional arrays with a data structure suitable for subsequent experimentation and machine learning. In doing so, we touched upon subjects such as the manipulation of vectors and matrices, categorical data encoding, textual data processing, fixing missing data and errors, slicing and dicing, merging, and stacking.

pandas and NumPy surely offer many more functions than the essential building blocks we presented here, as well as the commands and procedures illustrated. You can now take any available raw data and apply all the cleaning and shaping transformations necessary for your data science project.

In the next chapter, we will take...

CONTINUE READING
83
Tech Concepts
36
Programming languages
73
Tech Tools
Icon Unlimited access to the largest independent learning library in tech of over 8,000 expert-authored tech books and videos.
Icon Innovative learning tools, including AI book assistants, code context explainers, and text-to-speech.
Icon 50+ new titles added per month and exclusive early access to books as they are being written.
Python Data Science Essentials
notes
bookmark Notes and Bookmarks search Search in title playlist Add to playlist download Download options font-size Font size

Change the font size

margin-width Margin width

Change margin width

day-mode Day/Sepia/Night Modes

Change background colour

Close icon Search
Country selected

Close icon Your notes and bookmarks

Confirmation

Modal Close icon
claim successful

Buy this book with your credits?

Modal Close icon
Are you sure you want to buy this book with one of your credits?
Close
YES, BUY

Submit Your Feedback

Modal Close icon
Modal Close icon
Modal Close icon