Book Image

Python Data Science Essentials - Third Edition

By : Alberto Boschetti, Luca Massaron
Book Image

Python Data Science Essentials - Third Edition

By: Alberto Boschetti, Luca Massaron

Overview of this book

Fully expanded and upgraded, the latest edition of Python Data Science Essentials will help you succeed in data science operations using the most common Python libraries. This book offers up-to-date insight into the core of Python, including the latest versions of the Jupyter Notebook, NumPy, pandas, and scikit-learn. The book covers detailed examples and large hybrid datasets to help you grasp essential statistical techniques for data collection, data munging and analysis, visualization, and reporting activities. You will also gain an understanding of advanced data science topics such as machine learning algorithms, distributed computing, tuning predictive models, and natural language processing. Furthermore, You’ll also be introduced to deep learning and gradient boosting solutions such as XGBoost, LightGBM, and CatBoost. By the end of the book, you will have gained a complete overview of the principal machine learning algorithms, graph analysis techniques, and all the visualization and deployment instruments that make it easier to present your results to an audience of both data science experts and business users
Table of Contents (11 chapters)

Naive Bayes

Naive Bayes is a very common classifier used for probabilistic binary and multiclass classification. Given the feature vector, it leverages the Bayes rule to predict the probability of each class. It's often applied to text classification since it's very effective with large and fat data (that is a data set with many features), characterized by a consistent a priori probability, handling effectively the curse of dimensionality issue.

There are three kinds of Naive Bayes classifiers; each of them has strong assumptions (hypotheses) about the features. If you're dealing with real/continuous data, the Gaussian Naive Bayes classifier assumes that features are generated from a Gaussian process (that is, they are normally distributed). Alternatively, if you're dealing with an event model where events can be modeled with a multinomial distribution (in...