Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Chapter 12: Monotonic Constraints and Model Tuning for Interpretability

Most model classes have hyperparameters that can be tuned for faster execution speed, increasing predictive performance and reducing overfitting. One way of reducing overfitting is by introducing regularization into the model training. In Chapter 3, Interpretation Challenges, we called regularization a remedial interpretability property, which reduces complexity with a penalty or limitation that forces the model to learn sparser representations of the inputs. Regularized models generalize better, which is why it is highly recommended to tune models with this strategy. As a side effect, fewer features and their interactions are essential to the regularized model, making the model easier to interpret—less noise means a clearer signal!

And even though there are many hyperparameters, we will only focus on those that improve interpretability by controlling overfitting. Also, to a certain extent, we will revisit...