Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Creating a causal model

Decision-making will often involve understanding cause and effect. If the effect is desirable, you can decide to replicate its cause, or otherwise avoid it. You can change something on purpose to observe how it changes outcomes, or to trace back an accidental effect to its cause, or to simulate which change will produce the most beneficial impact. Causal inference can help us do all this by creating causal graphs and models. These tie all variables together and estimate effects to make more principled decisions. However, to properly assess the impact of a cause, whether by design or accident, you'll need to separate its effect from confounding variables.

The reason causal inference is relevant to this chapter is that the bank's policy decisions have the power to impact cardholder livelihoods significantly and, given the rise in suicides, even to the degree of life and death. Therefore, there's a moral imperative to assess policy decisions with...