Book Image

Interpretable Machine Learning with Python

By : Serg Masís
Book Image

Interpretable Machine Learning with Python

By: Serg Masís

Overview of this book

Do you want to gain a deeper understanding of your models and better mitigate poor prediction risks associated with machine learning interpretation? If so, then Interpretable Machine Learning with Python deserves a place on your bookshelf. We’ll be starting off with the fundamentals of interpretability, its relevance in business, and exploring its key aspects and challenges. As you progress through the chapters, you'll then focus on how white-box models work, compare them to black-box and glass-box models, and examine their trade-off. You’ll also get you up to speed with a vast array of interpretation methods, also known as Explainable AI (XAI) methods, and how to apply them to different use cases, be it for classification or regression, for tabular, time-series, image or text. In addition to the step-by-step code, this book will also help you interpret model outcomes using examples. You’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. The methods you’ll explore here range from state-of-the-art feature selection and dataset debiasing methods to monotonic constraints and adversarial retraining. By the end of this book, you'll be able to understand ML models better and enhance them through interpretability tuning.
Table of Contents (19 chapters)
1
Section 1: Introduction to Machine Learning Interpretation
5
Section 2: Mastering Interpretation Methods
12
Section 3:Tuning for Interpretability

Considering feature engineering

Let's assume that the non-profit has chosen to use the model whose features were selected with Lasso LARS with AIC (e-llarsic) but would like to evaluate whether you can improve it further. Now that you have removed over 300 features that might have only marginally improved predictive performance but mostly added noise, you are left with more relevant features. However, you also know that 63 features selected by the GAs (a-ga-rf) produced the same amount of RMSE as the 111 features. This means that while there's something in those extra features that improves profitability, it does not improve the RMSE.

From a feature selection standpoint, many things can be done to approach this problem. For instance, examine the overlap and difference of features between e-llarsic and a-ga-rf, and do feature selection variations strictly on those features to see whether the RMSE dips on any combination while keeping or improving on current profitability...