Book Image

Python Machine Learning By Example - Third Edition

By : Yuxi (Hayden) Liu
Book Image

Python Machine Learning By Example - Third Edition

By: Yuxi (Hayden) Liu

Overview of this book

Python Machine Learning By Example, Third Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques in areas such as exploratory data analysis, feature engineering, classification, regression, clustering, and NLP. By the end of this ML Python book, you will have gained a broad picture of the ML ecosystem and will be well-versed in the best practices of applying ML techniques to solve problems.
Table of Contents (17 chapters)
Other Books You May Enjoy

Machine Learning Best Practices

After working on multiple projects covering important machine learning concepts, techniques, and widely used algorithms, you have a broad picture of the machine learning ecosystem, as well as solid experience in tackling practical problems using machine learning algorithms and Python. However, there will be issues once we start working on projects from scratch in the real world. This chapter aims to get us ready for it with 21 best practices to follow throughout the entire machine learning solution workflow.

We will cover the following topics in this chapter:

  • Machine learning solution workflow
  • Tasks in the data preparation stage
  • Tasks in the training sets generation stage
  • Tasks in the algorithm training, evaluation, and selection stage
  • Tasks in the system deployment and monitoring stage
  • Best practices in the data preparation stage
  • Best practices in the training sets generation stage
  • Word embedding...