Book Image

Mastering Embedded Linux Programming - Second Edition

By : Chris Simmonds
Book Image

Mastering Embedded Linux Programming - Second Edition

By: Chris Simmonds

Overview of this book

Embedded Linux runs many of the devices we use every day, from smart TVs to WiFi routers, test equipment to industrial controllers - all of them have Linux at their heart. Linux is a core technology in the implementation of the inter-connected world of the Internet of Things. The comprehensive guide shows you the technologies and techniques required to build Linux into embedded systems. You will begin by learning about the fundamental elements that underpin all embedded Linux projects: the toolchain, the bootloader, the kernel, and the root filesystem. You’ll see how to create each of these elements from scratch, and how to automate the process using Buildroot and the Yocto Project. Moving on, you’ll find out how to implement an effective storage strategy for flash memory chips, and how to install updates to the device remotely once it is deployed. You’ll also get to know the key aspects of writing code for embedded Linux, such as how to access hardware from applications, the implications of writing multi-threaded code, and techniques to manage memory in an efficient way. The final chapters show you how to debug your code, both in applications and in the Linux kernel, and how to profile the system so that you can look out for performance bottlenecks. By the end of the book, you will have a complete overview of the steps required to create a successful embedded Linux system.
Table of Contents (17 chapters)

Creating a boot initramfs

An initial RAM filesystem, or initramfs, is a compressed cpio archive. cpio is an old Unix archive format, similar to TAR and ZIP but easier to decode and so requiring less code in the kernel. You need to configure your kernel with CONFIG_BLK_DEV_INITRD to support initramfs.

As it happens, there are three different ways to create a boot ramdisk: as a standalone cpio archive, as a cpio archive embedded in the kernel image, and as a device table which the kernel build system processes as part of the build. The first option gives the most flexibility, because we can mix and match kernels and ramdisks to our heart's content. However, it means that you have two files to deal with instead of one, and not all bootloaders have the facility to load a separate ramdisk. I will show you how to build one into the kernel later.

...