Book Image

Build Your Own Programming Language - Second Edition

By : Clinton L. Jeffery
Book Image

Build Your Own Programming Language - Second Edition

By: Clinton L. Jeffery

Overview of this book

There are many reasons to build a programming language: out of necessity, as a learning exercise, or just for fun. Whatever your reasons, this book gives you the tools to succeed. You’ll build the frontend of a compiler for your language and generate a lexical analyzer and parser using Lex and YACC tools. Then you’ll explore a series of syntax tree traversals before looking at code generation for a bytecode virtual machine or native code. In this edition, a new chapter has been added to assist you in comprehending the nuances and distinctions between preprocessors and transpilers. Code examples have been modernized, expanded, and rigorously tested, and all content has undergone thorough refreshing. You’ll learn to implement code generation techniques using practical examples, including the Unicon Preprocessor and transpiling Jzero code to Unicon. You'll move to domain-specific language features and learn to create them as built-in operators and functions. You’ll also cover garbage collection. Dr. Jeffery’s experiences building the Unicon language are used to add context to the concepts, and relevant examples are provided in both Unicon and Java so that you can follow along in your language of choice. By the end of this book, you'll be able to build and deploy your own domain-specific language.
Table of Contents (27 chapters)
1
Section I: Programming Language Frontends
7
Section II: Syntax Tree Traversals
13
Section III: Code Generation and Runtime Systems
22
Section IV: Appendix
23
Answers
24
Other Books You May Enjoy
25
Index

The difference between programming languages and libraries

Unless you are in it for the “fun” or the intellectual experience, building a programming language is a lot of work that might not be necessary. If your motives are strictly utilitarian, you don’t have to make a programming language when a library will do the job. Libraries are by far the most common way to extend an existing programming language to perform a new task. A library is a set of functions or classes that can be used together to write applications for some hardware or software technology. Many languages, including C and Java, are designed almost completely to revolve around a rich set of libraries. The language itself is very simple and general, while much of what a developer must learn to develop applications consists of how to use the various libraries.

The following is what libraries can do:

  • Introduce new data types (classes) and provide public functions (an API) to manipulate them
  • Provide a layer of abstraction on top of a set of hardware or operating system calls

The following is what libraries cannot do:

  • Introduce new control structures and syntax in support of new application domains
  • Embed/support new semantics within the existing language runtime system

Libraries do some things badly, so you might end up preferring to make a new language:

  • Libraries often get larger and more complex than necessary.
  • Libraries can have even steeper learning curves and poorer documentation than languages.
  • Every so often, libraries have conflicts with other libraries.
  • Applications that use libraries can become broken if the library changes incompatibly in a later version.

There is a natural evolutionary path from a library to a language. A reasonable approach to building a new language to support an application domain is to start by making or buying the best library available for that application domain. If the result does not meet your requirements in terms of supporting the domain and simplifying the task of writing programs for that domain, then you have a strong argument for a new language.

This book is about building your own language, not just building your own library. It turns out that learning about tools and techniques to implement programming languages is useful in many other contexts.