Book Image

Build Your Own Programming Language - Second Edition

By : Clinton L. Jeffery
Book Image

Build Your Own Programming Language - Second Edition

By: Clinton L. Jeffery

Overview of this book

There are many reasons to build a programming language: out of necessity, as a learning exercise, or just for fun. Whatever your reasons, this book gives you the tools to succeed. You’ll build the frontend of a compiler for your language and generate a lexical analyzer and parser using Lex and YACC tools. Then you’ll explore a series of syntax tree traversals before looking at code generation for a bytecode virtual machine or native code. In this edition, a new chapter has been added to assist you in comprehending the nuances and distinctions between preprocessors and transpilers. Code examples have been modernized, expanded, and rigorously tested, and all content has undergone thorough refreshing. You’ll learn to implement code generation techniques using practical examples, including the Unicon Preprocessor and transpiling Jzero code to Unicon. You'll move to domain-specific language features and learn to create them as built-in operators and functions. You’ll also cover garbage collection. Dr. Jeffery’s experiences building the Unicon language are used to add context to the concepts, and relevant examples are provided in both Unicon and Java so that you can follow along in your language of choice. By the end of this book, you'll be able to build and deploy your own domain-specific language.
Table of Contents (27 chapters)
1
Section I: Programming Language Frontends
7
Section II: Syntax Tree Traversals
13
Section III: Code Generation and Runtime Systems
22
Section IV: Appendix
23
Answers
24
Other Books You May Enjoy
25
Index

Creating and populating symbol tables for each scope

A symbol table contains a record of all the names that are declared for a scope. There is one symbol table for each scope. A symbol table provides a means of looking up symbols by their name to obtain information about them. If a variable was declared, the symbol table lookup returns a structure with all the information known about that variable: where it was declared, what its data type is, whether it is public or private, and so on. All this information can be found in the syntax tree. If we also place it in a table, the goal is to access the information directly, from anywhere else that information is needed.

The traditional implementation of a symbol table is a hash table, which provides a very fast information lookup. Your compiler could use any data structure that allows you to store or retrieve information associated with a symbol, even a linked list. But hash tables are the best for this, and they are standard in Unicon...