Book Image

Solutions Architect's Handbook

By : Saurabh Shrivastava, Neelanjali Srivastav
Book Image

Solutions Architect's Handbook

By: Saurabh Shrivastava, Neelanjali Srivastav

Overview of this book

Becoming a solutions architect gives you the flexibility to work with cutting-edge technologies and define product strategies. This handbook takes you through the essential concepts, design principles and patterns, architectural considerations, and all the latest technology that you need to know to become a successful solutions architect. This book starts with a quick introduction to the fundamentals of solution architecture design principles and attributes that will assist you in understanding how solution architecture benefits software projects across enterprises. You'll learn what a cloud migration and application modernization framework looks like, and will use microservices, event-driven, cache-based, and serverless patterns to design robust architectures. You'll then explore the main pillars of architecture design, including performance, scalability, cost optimization, security, operational excellence, and DevOps. Additionally, you'll also learn advanced concepts relating to big data, machine learning, and the Internet of Things (IoT). Finally, you'll get to grips with the documentation of architecture design and the soft skills that are necessary to become a better solutions architect. By the end of this book, you'll have learned techniques to create an efficient architecture design that meets your business requirements.
Table of Contents (18 chapters)

Evolution of solution architecture

Solution architecture has evolved with technological modernization. Today, solution architecture design has changed drastically compared to a couple of decades ago, due to the increasing use of the internet, the availability of high-bandwidth networks, the low cost of storage, and computer availability.

Back in the days before the era of the internet, most solution designs focused on providing a thick desktop client that was capable of operating with low bandwidth and working offline when a system could not connect to the internet.

This technology started evolving in the last decade. Service-oriented architecture (SOA) started taking shape for distributed design, and applications started moving from monolithic to modern n-tier architecture, where the frontend server, application server, and database were live in the computer and the storage layer. These SOAs are mostly achieved by an XML-based messaging protocol, called Simple Object Access Protocol...