Book Image

Reinforcement Learning Algorithms with Python

By : Andrea Lonza
Book Image

Reinforcement Learning Algorithms with Python

By: Andrea Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

Summary

In this chapter, we learned about a new class of reinforcement learning algorithms called policy gradients. They approach the RL problem in a different way, compared to the value function methods that were studied in the previous chapters.

The simpler version of PG methods is called REINFORCE, which was learned, implemented, and tested throughout the course of this chapter. We then proposed adding a baseline in REINFORCE in order to decrease the variance and increase the convergence property of the algorithm. AC algorithms are free from the need for a full trajectory using a critic, and thus, we then solved the same problem using the AC model.

With a solid foundation of the classic policy gradient algorithms, we can now go further. In the next chapter, we'll look at some more complex, state-of-the-art policy gradient algorithms; namely, Trust Region Policy Optimization...