Book Image

Reinforcement Learning Algorithms with Python

By : Andrea Lonza
Book Image

Reinforcement Learning Algorithms with Python

By: Andrea Lonza

Overview of this book

Reinforcement Learning (RL) is a popular and promising branch of AI that involves making smarter models and agents that can automatically determine ideal behavior based on changing requirements. This book will help you master RL algorithms and understand their implementation as you build self-learning agents. Starting with an introduction to the tools, libraries, and setup needed to work in the RL environment, this book covers the building blocks of RL and delves into value-based methods, such as the application of Q-learning and SARSA algorithms. You'll learn how to use a combination of Q-learning and neural networks to solve complex problems. Furthermore, you'll study the policy gradient methods, TRPO, and PPO, to improve performance and stability, before moving on to the DDPG and TD3 deterministic algorithms. This book also covers how imitation learning techniques work and how Dagger can teach an agent to drive. You'll discover evolutionary strategies and black-box optimization techniques, and see how they can improve RL algorithms. Finally, you'll get to grips with exploration approaches, such as UCB and UCB1, and develop a meta-algorithm called ESBAS. By the end of the book, you'll have worked with key RL algorithms to overcome challenges in real-world applications, and be part of the RL research community.
Table of Contents (19 chapters)
Free Chapter
1
Section 1: Algorithms and Environments
5
Section 2: Model-Free RL Algorithms
11
Section 3: Beyond Model-Free Algorithms and Improvements
17
Assessments

Learning without a model

By definition, the value function of a policy is the expected return (that is, the sum of discounted rewards) of that policy starting from a given state:

Following the reasoning of Chapter 3, Solving Problems with Dynamic Programming, DP algorithms update state values by computing expectations for all the next states of their values:

Unfortunately, computing the value function means that you need to know the state transition probabilities. In fact, DP algorithms use the model of the environment to obtain those probabilities. But the major concern is what to do when it's not available. The best answer is to gain all the information by interacting with the environment. If done well, it works because by sampling from the environment a substantial number of times, you should able to approximate the expectation and have a good estimation of the value...