Book Image

Python Machine Learning - Third Edition

By : Sebastian Raschka, Vahid Mirjalili
5 (1)
Book Image

Python Machine Learning - Third Edition

5 (1)
By: Sebastian Raschka, Vahid Mirjalili

Overview of this book

Python Machine Learning, Third Edition is a comprehensive guide to machine learning and deep learning with Python. It acts as both a step-by-step tutorial, and a reference you'll keep coming back to as you build your machine learning systems. Packed with clear explanations, visualizations, and working examples, the book covers all the essential machine learning techniques in depth. While some books teach you only to follow instructions, with this machine learning book, Raschka and Mirjalili teach the principles behind machine learning, allowing you to build models and applications for yourself. Updated for TensorFlow 2.0, this new third edition introduces readers to its new Keras API features, as well as the latest additions to scikit-learn. It's also expanded to cover cutting-edge reinforcement learning techniques based on deep learning, as well as an introduction to GANs. Finally, this book also explores a subfield of natural language processing (NLP) called sentiment analysis, helping you learn how to use machine learning algorithms to classify documents. This book is your companion to machine learning with Python, whether you're a Python developer new to machine learning or want to deepen your knowledge of the latest developments.
Table of Contents (21 chapters)
20
Index

Modeling complex functions with artificial neural networks

At the beginning of this book, we started our journey through machine learning algorithms with artificial neurons in Chapter 2, Training Simple Machine Learning Algorithms for Classification. Artificial neurons represent the building blocks of the multilayer artificial NNs that we will discuss in this chapter.

The basic concept behind artificial NNs was built upon hypotheses and models of how the human brain works to solve complex problem tasks. Although artificial NNs have gained a lot of popularity in recent years, early studies of NNs go back to the 1940s when Warren McCulloch and Walter Pitts first described how neurons could work. (A logical calculus of the ideas immanent in nervous activity, W. S. McCulloch and W. Pitts. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.)

However, in the decades that followed the first implementation of the McCulloch-Pitts neuron model—Rosenblatt's...