Book Image

Engineering MLOps

By : Emmanuel Raj
Book Image

Engineering MLOps

By: Emmanuel Raj

Overview of this book

Engineering MLps presents comprehensive insights into MLOps coupled with real-world examples in Azure to help you to write programs, train robust and scalable ML models, and build ML pipelines to train and deploy models securely in production. The book begins by familiarizing you with the MLOps workflow so you can start writing programs to train ML models. Then you’ll then move on to explore options for serializing and packaging ML models post-training to deploy them to facilitate machine learning inference, model interoperability, and end-to-end model traceability. You’ll learn how to build ML pipelines, continuous integration and continuous delivery (CI/CD) pipelines, and monitor pipelines to systematically build, deploy, monitor, and govern ML solutions for businesses and industries. Finally, you’ll apply the knowledge you’ve gained to build real-world projects. By the end of this ML book, you'll have a 360-degree view of MLOps and be ready to implement MLOps in your organization.
Table of Contents (18 chapters)
1
Section 1: Framework for Building Machine Learning Models
7
Section 2: Deploying Machine Learning Models at Scale
13
Section 3: Monitoring Machine Learning Models in Production

Chapter 6: Key Principles for Deploying Your ML System

In this chapter, you will learn the fundamental principles for deploying machine learning (ML) models in production and implement the hands-on deployment of ML models for the business problem we have been working on. To get a comprehensive understanding and first-hand experience, we will deploy ML models that were trained and packaged previously (in Chapter 4, Machine Learning Pipelines, and Chapter 5, Model Evaluation and Packaging) using the Azure ML service on two different deployment targets: an Azure container instance and a Kubernetes cluster.

We will also learn how to deploy ML models using an open source framework called MLflow that we have already worked with. This will enable you to get an understanding of deploying ML models as REST API endpoints on diverse deployment targets using two different tools (the Azure ML service and MLflow). This will equip you with the skills required to deploy ML models for any given...