Book Image

Transformers for Natural Language Processing

By : Denis Rothman
Book Image

Transformers for Natural Language Processing

By: Denis Rothman

Overview of this book

The transformer architecture has proved to be revolutionary in outperforming the classical RNN and CNN models in use today. With an apply-as-you-learn approach, Transformers for Natural Language Processing investigates in vast detail the deep learning for machine translations, speech-to-text, text-to-speech, language modeling, question answering, and many more NLP domains with transformers. The book takes you through NLP with Python and examines various eminent models and datasets within the transformer architecture created by pioneers such as Google, Facebook, Microsoft, OpenAI, and Hugging Face. The book trains you in three stages. The first stage introduces you to transformer architectures, starting with the original transformer, before moving on to RoBERTa, BERT, and DistilBERT models. You will discover training methods for smaller transformers that can outperform GPT-3 in some cases. In the second stage, you will apply transformers for Natural Language Understanding (NLU) and Natural Language Generation (NLG). Finally, the third stage will help you grasp advanced language understanding techniques such as optimizing social network datasets and fake news identification. By the end of this NLP book, you will understand transformers from a cognitive science perspective and be proficient in applying pretrained transformer models by tech giants to various datasets.
Table of Contents (16 chapters)
Other Books You May Enjoy

Detecting Customer Emotions to Make Predictions

Sentiment analysis relies on the principle of compositionality. If we cannot understand parts of a sentence, how can we understand a whole sentence? Is this tough task possible for NLP transformer models? We will try several transformer models in this chapter to find out.

We will start with the Stanford Sentiment Treebank (SST). The SST provides datasets with complex sentences to analyze. It is easy to analyze sentences such as "The movie was great." What happens if the task becomes very tough with complex sentences such as "Although the movie was a bit too long, I really enjoyed it."? This sentence is segmented. It forces a transformer model to understand not only the structure of the sequence but also its logical form.

We will then test several transformer models with complex sentences and some simple sentences. We will find that no matter which model we try, it will not work if it wasn't trained enough...