Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

13.1 Namespaces

Names of Python objects, such as the names of variables, classes, functions, and modules, are collected in namespaces. Modules and classes have their own named namespaces with the same name as these objects. These namespaces are created when a module is imported or a class is instantiated. The lifetime of a namespace of a module is as long as the current Python session. The lifetime of a namespace of a class instance is until the instance is deleted.

Functions create a local namespace when they are executed (invoked). It is deleted when the function stops the execution with a regular return or an exception. Local namespaces are unnamed.

The concept of namespaces puts a variable name in its context. For example, there are several functions with the name sin and they are distinguished by the namespace they belong to, as shown in the following code:

import math
import numpy
math.sin
numpy.sin

They are indeed different, as numpy.sin is a universal...