Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

Automatic Boolean casting

Using an if statement with a non-Boolean type will cast it to a Boolean. In other words, the following two statements are always equivalent:

if a:
...
if bool(a): # exactly the same as above
...

A typical example is testing whether a list is empty:

# L is a list
if L:
print("list not empty")
else:
print("list is empty")

An empty list, or tuple, will return False.

You can also use a variable in the if statement, for example, an integer:

# n is an integer
if n % 2: # the modulo operator
print("n is odd")
else:
print("n is even")

Note that we used % for the modulo operation, which returns the remainder of an integer division. In this case, it returns 0 or 1 as the remainder after modulo 2.

In this last example, the values 0 or 1 are cast to bool; see also Section 2.3.4, Booleans and integers.

The Boolean operators orand, and not will also implicitly convert some of their arguments to a Boolean.