Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

Compressed sparse row format (CSR)

The compressed sparse row (CSR) format uses three arrays: data, indptr, and indices:

  • The 1D array data stores all the nonzero values in order. It has as many elements as there are nonzero elements, often denoted by the variable nnz.
  • The 1D array indptr contains integers such that indptr[i] is the index of the element in data, which is the first nonzero element of row i. If the entire row i is zero, then indptr[i]==indptr[i+1]. If the original matrix has m rows, then len(indptr)==m+1.
  • The 1D array indices contains the column index information in such a way that indices[indptr[i]:indptr[i+1]] is an integer array with the column indexes of the nonzero elements in row i. Obviously, len(indices)==len(data)==nnz.

Let's see an example:

The CSR format of the matrix:

is given by the...