Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

14.5 Reading and writing Matlab data files

SciPy has the ability to read and write data in Matlab's .mat file format using the module \pyth!scipy.io!. The commands are loadmat and savemat.

To load data, use the following syntax:

import scipy.io
data = scipy.io.loadmat('datafile.mat')

The variable data now contains a dictionary, with keys corresponding to the variable names saved in the .mat file. The variables are in NumPy array format. Saving to .mat files involves creating a dictionary with all the variables you want to save (variable name and value). The command is then savemat:

data = {}
data['x'] = x
data['y'] = y
scipy.io.savemat('datafile.mat',data)

This saves the NumPy arrays, x and yin Matlab's internal file format, thereby preserving variable names.