Book Image

Scientific Computing with Python - Second Edition

By : Claus Führer, Jan Erik Solem, Olivier Verdier
Book Image

Scientific Computing with Python - Second Edition

By: Claus Führer, Jan Erik Solem, Olivier Verdier

Overview of this book

Python has tremendous potential within the scientific computing domain. This updated edition of Scientific Computing with Python features new chapters on graphical user interfaces, efficient data processing, and parallel computing to help you perform mathematical and scientific computing efficiently using Python. This book will help you to explore new Python syntax features and create different models using scientific computing principles. The book presents Python alongside mathematical applications and demonstrates how to apply Python concepts in computing with the help of examples involving Python 3.8. You'll use pandas for basic data analysis to understand the modern needs of scientific computing, and cover data module improvements and built-in features. You'll also explore numerical computation modules such as NumPy and SciPy, which enable fast access to highly efficient numerical algorithms. By learning to use the plotting module Matplotlib, you will be able to represent your computational results in talks and publications. A special chapter is devoted to SymPy, a tool for bridging symbolic and numerical computations. By the end of this Python book, you'll have gained a solid understanding of task automation and how to implement and test mathematical algorithms within the realm of scientific computing.
Table of Contents (23 chapters)
20
About Packt
22
References

6.2.4 Filling areas between curves

Filling is an ideal tool for highlighting differences between curves, such as noise on top of expected data and approximations versus exact functions.

Filling is done by the axis method, fill_between:

ax.fill_between(x,y1,y2)

For the next figure, we used the following command:

axf = ax.fill_between(x, sin(x), amod_sin(x), facecolor='gray')

 

From the last chapter, we already know the NumPy method, where. In the context here, where is a very convenient parameter that requires a Boolean array to specify the additional filling conditions:

axf = ax.fill_between(x, sin(x), amod_sin(x),where=amod_sin(x)-sin(x) > 0, facecolor=’gray’)

The Boolean array that selects the regions to fill is given by the condition amod_sin(x)-sin(x) > 0.

The next figure shows the curve with both variants of filling areas:

 
Figure 6.12: The amplitude-modulated sine function with annotations and filled areas (left)...