Book Image

PostgreSQL 12 High Availability Cookbook - Third Edition

By : Shaun Thomas
Book Image

PostgreSQL 12 High Availability Cookbook - Third Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of an outage or technical catastrophe, immediate recovery is essential. This updated edition ensures that you will learn the important concepts related to node architecture design, as well as techniques such as using repmgr for failover automation. From cluster layout and hardware selection to software stacks and horizontal scalability, this PostgreSQL cookbook will help you build a PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. You’ll start by understanding how to plan a PostgreSQL database architecture that is resistant to outages and scalable, as it is the scaffolding on which everything rests. With the bedrock established, you'll cover the topics that PostgreSQL database administrators need to know to manage a highly available cluster. This includes configuration, troubleshooting, monitoring and alerting, backups through proxies, failover automation, and other considerations that are essential for a healthy PostgreSQL cluster. Later, you’ll learn to use multi-master replication to maximize server availability. Later chapters will guide you through managing major version upgrades without downtime. By the end of this book, you’ll have learned how to build an efficient and adaptive PostgreSQL 12 database cluster.
Table of Contents (17 chapters)

Identifying important tables

Another aspect of maintaining a highly available database is to know all of the important information about the contents of the database itself. In this case, we aim to focus on tables and indexes that receive the most activity. If any problems that might require maintenance or a restart arise, the most active portions are the likely origin.

What is activity? Inserts, updates, deletes, and selects are a good start. PostgreSQL collects statistics on all of this information, making it easy to collect and track. It also records how often indexes or tables are scanned and how many rows were affected by each. In addition to this, we can observe how much disk space any object consumes. Given the assistance of a couple of contributed tools, we can also calculate how much of this space is currently reusable.

Data like this identifies which tables and indexes...