Book Image

PostgreSQL 12 High Availability Cookbook - Third Edition

By : Shaun Thomas
Book Image

PostgreSQL 12 High Availability Cookbook - Third Edition

By: Shaun Thomas

Overview of this book

Databases are nothing without the data they store. In the event of an outage or technical catastrophe, immediate recovery is essential. This updated edition ensures that you will learn the important concepts related to node architecture design, as well as techniques such as using repmgr for failover automation. From cluster layout and hardware selection to software stacks and horizontal scalability, this PostgreSQL cookbook will help you build a PostgreSQL cluster that will survive crashes, resist data corruption, and grow smoothly with customer demand. You’ll start by understanding how to plan a PostgreSQL database architecture that is resistant to outages and scalable, as it is the scaffolding on which everything rests. With the bedrock established, you'll cover the topics that PostgreSQL database administrators need to know to manage a highly available cluster. This includes configuration, troubleshooting, monitoring and alerting, backups through proxies, failover automation, and other considerations that are essential for a healthy PostgreSQL cluster. Later, you’ll learn to use multi-master replication to maximize server availability. Later chapters will guide you through managing major version upgrades without downtime. By the end of this book, you’ll have learned how to build an efficient and adaptive PostgreSQL 12 database cluster.
Table of Contents (17 chapters)

Performing a managed failover

Creating a PostgreSQL clone can be surprisingly dangerous. When using a utility such as rsync, accidentally transposing the source and target can result in erasing the source PostgreSQL data directory. This is especially true when swapping from one node to another and then reversing the process. It's all too easy to accidentally invoke the wrong script when the source and target are so readily switched.

We've already established how repmgr can ease the process of clone creation, and now it's time to discuss node promotion. There are two questions we will answer in this recipe: how do we swap from one active PostgreSQL node to another, and how do we then reactivate the original node without risking our data? The second question is perhaps more important because of the fact that we will be at reduced capacity following node deactivation...