Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Summary

In this chapter, we explored unsupervised learning methods that allow us to extract valuable signals from our data without relying on the help of outcome information provided by labels.

We learned how to use linear dimensionality reduction methods like PCA and ICA to extract uncorrelated or independent components from data that can serve as risk factors or portfolio weights. We also covered advanced nonlinear manifold learning techniques that produce state-of-the-art visualizations of complex, alternative datasets. In the second part of the chapter, we covered several clustering methods that produce data-driven groupings under various assumptions. These groupings can be useful, for example, to construct portfolios that apply risk-parity principles to assets that have been clustered hierarchically.

In the next three chapters, we will learn about various machine learning techniques for a key source of alternative data, namely natural language processing for text documents...