Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Summary

In this chapter, we discussed a new way of generating text features that use shallow neural networks for unsupervised machine learning. We saw how the resulting word embeddings capture interesting semantic aspects beyond the meaning of individual tokens by capturing some of the context in which they are used. We also covered how to evaluate the quality of word vectors using analogies and linear algebra.

We used Keras to build the network architecture that produces these features and applied the more performant Gensim implementation to financial news and SEC filings. Despite the relatively small datasets, the word2vec embeddings did capture meaningful relationships. We also demonstrated how appropriate labeling with stock price data can form the basis for supervised learning.

We applied the doc2vec algorithm, which produces a document rather than token vectors, to build a sentiment classifier based on Yelp business reviews. While this is unlikely to yield tradeable...