Book Image

Machine Learning for Algorithmic Trading - Second Edition

By : Stefan Jansen
Book Image

Machine Learning for Algorithmic Trading - Second Edition

By: Stefan Jansen

Overview of this book

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance.
Table of Contents (27 chapters)
24
References
25
Index

Summary

In this chapter, we introduced a range of alpha factors that have been used by professional investors to design and evaluate strategies for decades. We laid out how they work and illustrated some of the economic mechanisms believed to drive their performance. We did this because a solid understanding of how factors produce excess returns helps innovate new factors.

We also presented several tools that you can use to generate your own factors from various data sources and demonstrated how the Kalman filter and wavelets allow us to smoothen noisy data in the hope of retrieving a clearer signal.

Finally, we provided a glimpse of the Zipline library for the event-driven simulation of a trading algorithm, both offline and on the Quantopian online platform. You saw how to implement a simple mean reversion factor and how to combine multiple factors in a simple way to drive a basic strategy. We also looked at the Alphalens library, which permits the evaluation of the...