Book Image

Hands-On Reinforcement Learning for Games

By : Micheal Lanham
Book Image

Hands-On Reinforcement Learning for Games

By: Micheal Lanham

Overview of this book

With the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent’s productivity. As you advance, you’ll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you’ll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications.
Table of Contents (19 chapters)
1
Section 1: Exploring the Environment
7
Section 2: Exploiting the Knowledge
15
Section 3: Reward Yourself

Temporal Difference Learning

In our previous discussion on the history of reinforcement learning, we covered the two main threads, trial and error and Dynamic Programming (DP), which came together to derive current modern Reinforcement Learning (RL). As we mentioned in earlier chapters, there is also a third thread that arrived late called Temporal Difference Learning (TDL). In this chapter, we will explore TDL and how it solves the Temporal Credit Assignment (TCA) problem. From there, we will explore how TD differs from Monte Carlo (MC) and how it evolves to full Q-learning. After that, we will explore the differences between on-policy and off-policy learning and then, finally, work on a new example RL environment.

For this chapter, we will introduce TDL and how it improves on the previous techniques we looked at in previous chapters. Here are the main topics we will cover in...