Book Image

Learn C Programming - Second Edition

By : Jeff Szuhay
Book Image

Learn C Programming - Second Edition

By: Jeff Szuhay

Overview of this book

The foundation for many modern programming languages such as C++, C#, JavaScript, and Go, C is widely used as a system programming language as well as for embedded systems and high-performance computing. With this book, you'll be able to get up to speed with C in no time. The book takes you through basic programming concepts and shows you how to implement them in the C programming language. Throughout the book, you’ll create and run programs that demonstrate essential C concepts, such as program structure with functions, control structures such as loops and conditional statements, and complex data structures. As you make progress, you’ll get to grips with in-code documentation, testing, and validation methods. This new edition expands upon the use of enumerations, arrays, and additional C features, and provides two working programs based on the code used in the book. What's more, this book uses the method of intentional failure, where you'll develop a working program and then purposely break it to see what happens, thereby learning how to recognize possible mistakes when they happen. By the end of this C programming book, you’ll have developed basic programming skills in C that can be easily applied to other programming languages and have gained a solid foundation for you to build on as a programmer.
Table of Contents (38 chapters)
1
Part 1: C Fundamentals
10
Part 2: Complex Data Types
19
Part 3: Memory Manipulation
22
Part 4: Input and Output
28
Part 5: Building Blocks for Larger Programs

Reading unsorted names and sorting them 
for output

In Chapter 21Exploring Formatted Input, we read names into an array, sorting them as they were inserted. That works fine when the program can give feedback to the user such as when the array is full, but what if, for file input, we have a very large number of names? For that, we need a different data structure to read in all of the names to sort them.

Recall that in Chapter 18Using Dynamic Memory Allocation, we created a linked list to contain our deck of cards, which were then randomized and dealt out to four hands. A linked list is one of many useful data structures used to dynamically store and sort large numbers of data elements. We will create another special-purpose linked list for our list of names and add each name to the list in sorted order. This approach will be similar to what we did in Chapter 21Exploring Formatted Input, but instead of using a fixed-size...