Book Image

Learn C Programming. - Second Edition

By : Jeff Szuhay
Book Image

Learn C Programming. - Second Edition

By: Jeff Szuhay

Overview of this book

The foundation for many modern programming languages such as C++, C#, JavaScript, and Go, C is widely used as a system programming language as well as for embedded systems and high-performance computing. With this book, you'll be able to get up to speed with C in no time. The book takes you through basic programming concepts and shows you how to implement them in the C programming language. Throughout the book, you’ll create and run programs that demonstrate essential C concepts, such as program structure with functions, control structures such as loops and conditional statements, and complex data structures. As you make progress, you’ll get to grips with in-code documentation, testing, and validation methods. This new edition expands upon the use of enumerations, arrays, and additional C features, and provides two working programs based on the code used in the book. What's more, this book uses the method of intentional failure, where you'll develop a working program and then purposely break it to see what happens, thereby learning how to recognize possible mistakes when they happen. By the end of this C programming book, you’ll have developed basic programming skills in C that can be easily applied to other programming languages and have gained a solid foundation for you to build on as a programmer.
Table of Contents (37 chapters)
1
Part 1: C Fundamentals
10
Part 2: Complex Data Types
19
Part 3: Memory Manipulation
22
Part 4: Input and Output
28
Part 5: Building Blocks for Larger Programs

Understanding the sizes of data types

As discussed earlier, the number of bytes that a type uses is directly related to the range of values it can hold. Up to this point, this has all been necessarily theoretical. Now, let's write a program to demonstrate what we've been exploring.

While we are focusing exclusively on the C standard, we need to be aware that the standard allows for quite a bit of discretion on the part of any compiler implementor. This is necessary because not all CPUs have the same architecture, nor do they all have the same capabilities. Nor should they. Also, compilers are implemented by humans trying to interpret complex standards documents. Humans, despite our best intentions, might not perfectly conform to the standard.

In this light, it is critical to understand the behavior of your compiler on your system. Here and throughout the book, we emphasize the trust but verify principle so that we are not surprised when things do not work as we expect...