Book Image

Solutions Architect’s Handbook - Second Edition

By : Saurabh Shrivastava, Neelanjali Srivastav
4 (2)
Book Image

Solutions Architect’s Handbook - Second Edition

4 (2)
By: Saurabh Shrivastava, Neelanjali Srivastav

Overview of this book

Becoming a solutions architect requires a hands-on approach, and this edition of the Solutions Architect's Handbook brings exactly that. This handbook will teach you how to create robust, scalable, and fault-tolerant solutions and next-generation architecture designs in a cloud environment. It will also help you build effective product strategies for your business and implement them from start to finish. This new edition features additional chapters on disruptive technologies, such as Internet of Things (IoT), quantum computing, data engineering, and machine learning. It also includes updated discussions on cloud-native architecture, blockchain data storage, and mainframe modernization with public cloud. The Solutions Architect's Handbook provides an understanding of solution architecture and how it fits into an agile enterprise environment. It will take you through the journey of solution architecture design by providing detailed knowledge of design pillars, advanced design patterns, anti-patterns, and the cloud-native aspects of modern software design. By the end of this handbook, you'll have learned the techniques needed to create efficient architecture designs that meet your business requirements.
Table of Contents (22 chapters)
Other Books You May Enjoy

What is big data architecture?

The sheer volume of collected data can cause problems. With the accumulation of more and more data, managing and moving data along with its underlying big data infrastructure becomes increasingly difficult. The rise of cloud providers has facilitated the ability to move applications to the cloud. Multiple sources of data result in increased volumes, velocity, and variety. The following are some common computer-generated data sources:

  • Application server logs: Application logs and games
  • Clickstream logs: From website clicks and browsing
  • Sensor data: Weather, water, wind energy, and smart grids
  • Images and videos: Traffic and security cameras

Computer-generated data can vary from semi-structured logs to unstructured binaries. Computer-generated data sources can produce pattern-matching or correlations in data that generate recommendations for social networking and online gaming. You can also use computer-generated data...