Book Image

Solutions Architect’s Handbook - Second Edition

By : Saurabh Shrivastava, Neelanjali Srivastav
4 (2)
Book Image

Solutions Architect’s Handbook - Second Edition

4 (2)
By: Saurabh Shrivastava, Neelanjali Srivastav

Overview of this book

Becoming a solutions architect requires a hands-on approach, and this edition of the Solutions Architect's Handbook brings exactly that. This handbook will teach you how to create robust, scalable, and fault-tolerant solutions and next-generation architecture designs in a cloud environment. It will also help you build effective product strategies for your business and implement them from start to finish. This new edition features additional chapters on disruptive technologies, such as Internet of Things (IoT), quantum computing, data engineering, and machine learning. It also includes updated discussions on cloud-native architecture, blockchain data storage, and mainframe modernization with public cloud. The Solutions Architect's Handbook provides an understanding of solution architecture and how it fits into an agile enterprise environment. It will take you through the journey of solution architecture design by providing detailed knowledge of design pillars, advanced design patterns, anti-patterns, and the cloud-native aspects of modern software design. By the end of this handbook, you'll have learned the techniques needed to create efficient architecture designs that meet your business requirements.
Table of Contents (22 chapters)
20
Other Books You May Enjoy
21
Index

Working with data science and ML

ML is all about working with data. The quality of the training data and labels is crucial to the success of an ML model. High-quality data leads to a more accurate ML model and the right prediction. Often in the real world, your data has multiple issues such as missing values, noise, bias, outliers, and so on. Part of data science is the cleaning and preparing of your data to get it ready for ML.

The first thing about data preparation is to understand business problems. Data scientists are often eager to jump into the data directly, start coding, and produce insights. However, without a clear understanding of the business problem, any insights you develop have a high chance of becoming a solution that cannot address the problem at hand. It makes much more sense to start with a straightforward user story and business objectives before getting lost in the data. After building a solid understanding of the business problem, you can begin to narrow...