Book Image

Modern C++ Programming Cookbook - Third Edition

By : Marius Bancila
Book Image

Modern C++ Programming Cookbook - Third Edition

By: Marius Bancila

Overview of this book

The updated third edition of Modern C++ Programming Cookbook addresses the latest features of C++23, such as the stack library, the expected and mdspan types, span buffers, formatting library improvements, and updates to the ranges library. It also gets into more C++20 topics not previously covered, such as sync output streams and source_location. The book is organized in the form of practical recipes covering a wide range of real-world problems. It gets into the details of all the core concepts of modern C++ programming, such as functions and classes, iterators and algorithms, streams and the file system, threading and concurrency, smart pointers and move semantics, and many others. You will cover the performance aspects of programming in depth, and learning to write fast and lean code with the help of best practices. You will explore useful patterns and the implementation of many idioms, including pimpl, named parameter, attorney-client, and the factory pattern. A chapter dedicated to unit testing introduces you to three of the most widely used libraries for C++: Boost.Test, Google Test, and Catch2. By the end of this modern C++ programming book, you will be able to effectively leverage the features and techniques of C++11/14/17/20/23 programming to enhance the performance, scalability, and efficiency of your applications.
Table of Contents (15 chapters)
13
Other Books You May Enjoy
14
Index

Implementing a thread-safe singleton

Singleton is probably one of the most well-known design patterns. It restricts the instantiation of a single object of a class, something that is necessary in some cases, although many times the use of a singleton is rather an anti-pattern that can be avoided with other design choices.

Since a singleton means a single instance of a class is available to an entire program, it is likely that such a unique instance might be accessible from different threads. Therefore, when you implement a singleton, you should also make it thread-safe.

Before C++11, doing that was not an easy job, and a double-checked locking technique was the typical approach. However, Scott Meyers and Andrei Alexandrescu showed, in a paper called C++ and the Perils of Double-Checked Locking, that using this pattern did not guarantee a thread-safe singleton implementation in portable C++. Fortunately, this changed in C++11, and this recipe shows how to write a thread-safe...