Book Image

Modern C++ Programming Cookbook - Third Edition

By : Marius Bancila
Book Image

Modern C++ Programming Cookbook - Third Edition

By: Marius Bancila

Overview of this book

The updated third edition of Modern C++ Programming Cookbook addresses the latest features of C++23, such as the stack library, the expected and mdspan types, span buffers, formatting library improvements, and updates to the ranges library. It also gets into more C++20 topics not previously covered, such as sync output streams and source_location. The book is organized in the form of practical recipes covering a wide range of real-world problems. It gets into the details of all the core concepts of modern C++ programming, such as functions and classes, iterators and algorithms, streams and the file system, threading and concurrency, smart pointers and move semantics, and many others. You will cover the performance aspects of programming in depth, and learning to write fast and lean code with the help of best practices. You will explore useful patterns and the implementation of many idioms, including pimpl, named parameter, attorney-client, and the factory pattern. A chapter dedicated to unit testing introduces you to three of the most widely used libraries for C++: Boost.Test, Google Test, and Catch2. By the end of this modern C++ programming book, you will be able to effectively leverage the features and techniques of C++11/14/17/20/23 programming to enhance the performance, scalability, and efficiency of your applications.
Table of Contents (15 chapters)
13
Other Books You May Enjoy
14
Index

Properly initializing a pseudo-random number generator

In the previous recipe, we looked at the pseudo-random number library, along with its components, and how it can be used to produce numbers in different statistical distributions. One important factor that was overlooked in that recipe is the proper initialization of the pseudo-random number generators.

With careful analysis (which is beyond the purpose of this recipe or this book), it can be shown that the Mersenne Twister engine has a bias toward producing some values repeatedly and omitting others, thus generating numbers not in a uniform distribution, but rather in a binomial or Poisson distribution. In this recipe, you will learn how to initialize a generator in order to produce pseudo-random numbers with a true uniform distribution.

Getting ready

You should read the previous recipe, Generating pseudo-random numbers, to get an overview of what the pseudo-random number library offers.

How to do it...

To...