Book Image

Deep Reinforcement Learning with Python - Second Edition

By : Sudharsan Ravichandiran
Book Image

Deep Reinforcement Learning with Python - Second Edition

By: Sudharsan Ravichandiran

Overview of this book

With significant enhancements in the quality and quantity of algorithms in recent years, this second edition of Hands-On Reinforcement Learning with Python has been revamped into an example-rich guide to learning state-of-the-art reinforcement learning (RL) and deep RL algorithms with TensorFlow 2 and the OpenAI Gym toolkit. In addition to exploring RL basics and foundational concepts such as Bellman equation, Markov decision processes, and dynamic programming algorithms, this second edition dives deep into the full spectrum of value-based, policy-based, and actor-critic RL methods. It explores state-of-the-art algorithms such as DQN, TRPO, PPO and ACKTR, DDPG, TD3, and SAC in depth, demystifying the underlying math and demonstrating implementations through simple code examples. The book has several new chapters dedicated to new RL techniques, including distributional RL, imitation learning, inverse RL, and meta RL. You will learn to leverage stable baselines, an improvement of OpenAI’s baseline library, to effortlessly implement popular RL algorithms. The book concludes with an overview of promising approaches such as meta-learning and imagination augmented agents in research. By the end, you will become skilled in effectively employing RL and deep RL in your real-world projects.
Table of Contents (22 chapters)
Other Books You May Enjoy

Generative adversarial networks

Generative Adversarial Networks (GANs) was first introduced by Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio in their paper, Generative Adversarial Networks, in 2014.

GANs are used extensively for generating new data points. They can be applied to any type of dataset, but they are popularly used for generating images. Some of the applications of GANs include generating realistic human faces, converting grayscale images to colored images, translating text descriptions into realistic images, and many more.

GANs have evolved so much in recent years that they can generate a very realistic image. The following figure shows the evolution of GANs in generating images over the course of five years:

Figure 7.42: Evolution of GANs over the years

Excited about GANs already? Now, we will see how exactly they work. Before going ahead, let's consider...