Book Image

Essential PySpark for Scalable Data Analytics

By : Sreeram Nudurupati
Book Image

Essential PySpark for Scalable Data Analytics

By: Sreeram Nudurupati

Overview of this book

Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems.
Table of Contents (19 chapters)
1
Section 1: Data Engineering
6
Section 2: Data Science
13
Section 3: Data Analysis

Chapter 9: Machine Learning Life Cycle Management

In the previous chapters, we explored the basics of scalable machine learning using Apache Spark. Algorithms dealing with supervised and unsupervised learning were introduced and their implementation details were presented using Apache Spark MLlib. In real-world scenarios, it is not sufficient to just train one model. Instead, multiple versions of the same model must be built using the same dataset by varying the model parameters to get the best possible model. Also, the same model might not be suitable for all applications, so multiple models are trained. Thus, it is necessary to track various experiments, their parameters, their metrics, and the version of the data they were trained on. Furthermore, models often drift, meaning that their prediction power decreases due to changes in the environment, so they need to be monitored and retrained when necessary.

This chapter will introduce the concepts of experiment tracking, model tuning...