Book Image

Interpretable Machine Learning with Python - Second Edition

By : Serg Masís
4 (4)
Book Image

Interpretable Machine Learning with Python - Second Edition

4 (4)
By: Serg Masís

Overview of this book

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Detecting bias

There are many sources of bias in machine learning. As outlined in Chapter 1, Interpretation, Interpretability, and Explainability; and Why Does It All Matter?, there are ample sources of bias. Those rooted in the truths that the data represents, such as systemic and structural ones, lead to prejudice bias in the data. There are also biases rooted in the data, such as sample, exclusion, association, and measurement biases. Lastly, there are biases in the insights we derive from data or models we have to be careful with, such as conservatism bias, salience bias, and fundamental attribution error.

For this example, to properly disentangle so many bias levels, we ought to connect our data to census data for Taiwan in 2005 and historical lending data split by demographics. Then, using these external datasets, control for credit card contract conditions, as well as gender, income, and other demographic data to ascertain if young people, in particular, were targeted for...