Book Image

Interpretable Machine Learning with Python - Second Edition

By : Serg Masís
4 (4)
Book Image

Interpretable Machine Learning with Python - Second Edition

4 (4)
By: Serg Masís

Overview of this book

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Exploring embedded feature selection methods

Embedded methods exist within models themselves by naturally selecting features during training. You can leverage the intrinsic properties of any model that has them to capture the features selected:

  • Tree-based models: For instance, we have used the following code many times to count the number of features used by the RF models, which is evidence of feature selection naturally occurring in the learning process:
              sum(reg_mdls[mdlname]['fitted'].feature_importances_ > 0)

XGBoost's RF uses gain by default, which is the average decrease in error in all splits where it used the feature to compute feature importance. We can increase the threshold above 0 to select even fewer features according to this relative contribution. However, by constraining the trees' depth, we forced the model to choose even fewer features already.

  • Regularized models with coefficients: We will study this further in Chapter 12, Monotonic...