Book Image

Interpretable Machine Learning with Python - Second Edition

By : Serg Masís
4 (4)
Book Image

Interpretable Machine Learning with Python - Second Edition

4 (4)
By: Serg Masís

Overview of this book

Interpretable Machine Learning with Python, Second Edition, brings to light the key concepts of interpreting machine learning models by analyzing real-world data, providing you with a wide range of skills and tools to decipher the results of even the most complex models. Build your interpretability toolkit with several use cases, from flight delay prediction to waste classification to COMPAS risk assessment scores. This book is full of useful techniques, introducing them to the right use case. Learn traditional methods, such as feature importance and partial dependence plots to integrated gradients for NLP interpretations and gradient-based attribution methods, such as saliency maps. In addition to the step-by-step code, you’ll get hands-on with tuning models and training data for interpretability by reducing complexity, mitigating bias, placing guardrails, and enhancing reliability. By the end of the book, you’ll be confident in tackling interpretability challenges with black-box models using tabular, language, image, and time series data.
Table of Contents (17 chapters)
15
Other Books You May Enjoy
16
Index

Implementing model constraints

We will discuss how to implement constraints first with XGBoost and all popular tree ensembles, for that matter, because the parameters are named the same (see Figure 12.12). Then, we will do so with TensorFlow Lattice. But before we move forward with any of that, let’s remove race from the data, as follows:

X_train_con = X_train.drop(['race'], axis=1).copy()
X_test_con = X_test.drop(['race'], axis=1).copy()

Now, with race out of the picture, the model may still have some bias. However, the feature engineering we performed and the constraints we will place can help align the model against them, given the double standards we found in Chapter 6, Anchors and Counterfactual Explanations. That being said, the resulting model might perform worse against the test data. There are two reasons for this, outlined here:

  • Loss of information: Race, especially through interaction with other features, impacted the outcome...