Book Image

Applied Deep Learning and Computer Vision for Self-Driving Cars

By : Sumit Ranjan, Dr. S. Senthamilarasu
Book Image

Applied Deep Learning and Computer Vision for Self-Driving Cars

By: Sumit Ranjan, Dr. S. Senthamilarasu

Overview of this book

Thanks to a number of recent breakthroughs, self-driving car technology is now an emerging subject in the field of artificial intelligence and has shifted data scientists' focus to building autonomous cars that will transform the automotive industry. This book is a comprehensive guide to use deep learning and computer vision techniques to develop autonomous cars. Starting with the basics of self-driving cars (SDCs), this book will take you through the deep neural network techniques required to get up and running with building your autonomous vehicle. Once you are comfortable with the basics, you'll delve into advanced computer vision techniques and learn how to use deep learning methods to perform a variety of computer vision tasks such as finding lane lines, improving image classification, and so on. You will explore the basic structure and working of a semantic segmentation model and get to grips with detecting cars using semantic segmentation. The book also covers advanced applications such as behavior-cloning and vehicle detection using OpenCV, transfer learning, and deep learning methodologies to train SDCs to mimic human driving. By the end of this book, you'll have learned how to implement a variety of neural networks to develop your own autonomous vehicle using modern Python libraries.
Table of Contents (18 chapters)
1
Section 1: Deep Learning Foundation and SDC Basics
5
Section 2: Deep Learning and Computer Vision Techniques for SDC
10
Section 3: Semantic Segmentation for Self-Driving Cars
13
Section 4: Advanced Implementations

Optimizers

Optimizers define how a neural network learns. They define the value of parameters during the training such that the loss function is at its lowest.

Gradient descent is an optimization algorithm for finding the minima of a function or the minimum value of a cost function. This is useful to us as we want to minimize the cost function. So, to find the local minimum, we take steps proportional to the negative of the gradient.

Let's go through a very simple example in one dimension, shown in the following plot:

Fig 2.17: Gradient descent

On the axis, we have the cost (the result of the cost function), and on the axis, we have the particular weight we are trying to choose (we chose the random weight). The weight minimizes the cost function and we can see that, basically, the parameter value is at the bottom of the parabola. We have to minimize the value of the cost function to the minimum value. Finding the minimum is really...