Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By : Kaiwan N Billimoria
Book Image

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization

By: Kaiwan N Billimoria

Overview of this book

Linux Kernel Programming Part 2 - Char Device Drivers and Kernel Synchronization is an ideal companion guide to the Linux Kernel Programming book. This book provides a comprehensive introduction for those new to Linux device driver development and will have you up and running with writing misc class character device driver code (on the 5.4 LTS Linux kernel) in next to no time. You'll begin by learning how to write a simple and complete misc class character driver before interfacing your driver with user-mode processes via procfs, sysfs, debugfs, netlink sockets, and ioctl. You'll then find out how to work with hardware I/O memory. The book covers working with hardware interrupts in depth and helps you understand interrupt request (IRQ) allocation, threaded IRQ handlers, tasklets, and softirqs. You'll also explore the practical usage of useful kernel mechanisms, setting up delays, timers, kernel threads, and workqueues. Finally, you'll discover how to deal with the complexity of kernel synchronization with locking technologies (mutexes, spinlocks, and atomic/refcount operators), including more advanced topics such as cache effects, a primer on lock-free techniques, deadlock avoidance (with lockdep), and kernel lock debugging techniques. By the end of this Linux kernel book, you'll have learned the fundamentals of writing Linux character device driver code for real-world projects and products.
Table of Contents (11 chapters)
1
Section 1: Character Device Driver Basics
3
User-Kernel Communication Pathways
5
Handling Hardware Interrupts
6
Working with Kernel Timers, Threads, and Workqueues
7
Section 2: Delving Deeper

Using kernel workqueues

A workqueue is an abstraction layer over the creation and management of kernel worker threads. They help solve a crucial problem: directly working with kernel threads, especially when several are involved, is not only difficult but can quite easily result in dangerous bugs such as races (and thus the potential for deadlock), as well as poor thread management, resulting in efficiency losses. Workqueues are bottom-half mechanisms that are employed within the Linux kernel (along with tasklets and softirqs).

The modern workqueue implementation in the Linux kernel called the concurrency managed work queue (cmwq) is really a pretty elaborate framework, with various strategies for dynamically and efficiently provisioning kernel threads based on specific requirements.

In this book, we prefer to focus on the usage of the kernel-global workqueue rather than its internal design and implementation. If you'd like to learn more...