Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Summary

Having completed this chapter, you should have a good understanding of the high-level architectures and features of the x86, x64, 32-bit ARM, and 64-bit ARM registers, instruction sets, and assembly languages.

The x86 and x64 architectures represent a mostly CISC approach to processor design, using variable-length instructions that can take many cycles to execute, a lengthy pipeline, and (in x86) a limited number of processor registers.

The ARM architectures, on the other hand, implement RISC processors with mostly single-cycle instruction execution, a large register set, and (somewhat) fixed-length instructions. Early versions of ARM had pipelines as short as three stages, though later generations have considerably more stages.

Is one of these architectures better than the other, in a general sense? It may be that each is better in some ways, and system designers must make their selection of processor architecture based on the specific needs of the system under...