Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Summary

This chapter began with an introduction to the properties of electrical circuits and showed how components such as voltage sources, resistors, and wires are represented in circuit diagrams. The transistor was introduced, with a focus on its use as a switching element in digital circuits. The NOT gate and the AND gate were constructed from transistors and resistors. Additional types of logic gates were defined and truth tables were presented for each device. Logic gates were used to construct more complex digital circuits, including latches, flip-flops, registers, and adders. The concept of sequential logic was introduced, and its applicability to processor design was discussed. Finally, hardware description languages were introduced and a 4-bit adder example was presented in VHDL.

You should now understand basic digital circuit concepts and the design tools used in the development of modern processors. The next chapter will expand upon these building blocks to explore...