Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By : Jim Ledin
Book Image

Modern Computer Architecture and Organization – Second Edition - Second Edition

By: Jim Ledin

Overview of this book

Are you a software developer, systems designer, or computer architecture student looking for a methodical introduction to digital device architectures, but are overwhelmed by the complexity of modern systems? This step-by-step guide will teach you how modern computer systems work with the help of practical examples and exercises. You’ll gain insights into the internal behavior of processors down to the circuit level and will understand how the hardware executes code developed in high-level languages. This book will teach you the fundamentals of computer systems including transistors, logic gates, sequential logic, and instruction pipelines. You will learn details of modern processor architectures and instruction sets including x86, x64, ARM, and RISC-V. You will see how to implement a RISC-V processor in a low-cost FPGA board and write a quantum computing program and run it on an actual quantum computer. This edition has been updated to cover the architecture and design principles underlying the important domains of cybersecurity, blockchain and bitcoin mining, and self-driving vehicles. By the end of this book, you will have a thorough understanding of modern processors and computer architecture and the future directions these technologies are likely to take.
Table of Contents (21 chapters)
18
Other Books You May Enjoy
19
Index

Chapter 13: Domain-Specific Computer Architectures

Exercise 1

Draw a block diagram of the computing architecture for a system to measure and report weather data 24 hours a day at 5-minute intervals using SMS text messages. The system is battery-powered and relies on solar cells to recharge the battery during daylight hours. Assume the weather instrumentation consumes minimal average power, only requiring full power momentarily during each measurement cycle.

Answer

Based on the performance requirements, a processor capable of entering a very low power state for minutes at a time should be able to operate from a moderately sized battery for days at a time. By only powering weather sensors when necessary to take a measurement, and only powering the cellular transceiver when it is time to transmit data, power usage is minimized.

The following diagram represents one possible configuration for this system:

Figure 5: Initial weather data collection system diagram...